
ReDRAM: A Reconfigurable Processing-in-DRAM Platform for
Accelerating Bulk Bit-Wise Operations

Shaahin Angizi† and Deliang Fan§
†University of Central Florida, Orlando, FL 32816
§Arizona State University, Tempe, AZ 85287
angizi@knights.ucf.edu,dfan@asu.edu

Abstract— In this paper, we propose ReDRAM, as a reconfig-
urable DRAM-based processing-in-memory (PIM) accelerator,
which transforms current DRAM architecture to massively par-
allel computational units exploiting the high internal bandwidth
of modern memory chips. ReDRAM uses the analog operation
of DRAM sub-arrays and elevates it to implement a full set of
1- and 2-input bulk bit-wise operations (NOT, (N)AND, (N)OR,
and even X(N)OR) between operands stored in the same bit-line,
based on a new dual-row activation mechanism with a modest
change to peripheral circuits such sense amplifiers. ReDRAM
can be leveraged to greatly reduce energy consumption and la-
tency of complex in-DRAM logic computations relying on state-
of-the-art mechanisms based on triple-row activation, dual-
contact cells, row initialization, NOR style, etc. The extensive
circuit-architecture simulations show that ReDRAM achieves on
average 54× and 7.1× higher throughput for performing bulk
bit-wise operations compared with CPU and GPU, respectively.
Besides, ReDRAM outperforms recent processing-in-DRAM
platforms with up to 3.7× better performance.

I. INTRODUCTION

In the last two decades, Processing-in-Memory (PIM)
architecture, as a potentially viable way to solve the mem-
ory wall challenge, has been well explored for different
applications [1]–[3]. The key concept behind PIM is to
realize logic computation within memory to process data by
leveraging the inherent parallel computing mechanism and
exploiting large internal memory bandwidth. The proposals
for exploiting SRAM-based [4] PIM architectures can be
found in recent literature. However, PIM in context of
main memory (DRAM- [2], [3]) has drawn much more
attention in recent years mainly due to larger memory
capacities and off-chip data transfer reduction as opposed
to SRAM-based PIM. Such processing-in-DRAM platforms
show significantly higher throughputs leveraging multi-row
activation methods to perform bulk bit-wise operations by
either modifying the DRAM cell and/or sense amplifier.
For example, Ambit [2] uses triple-row activation method
to implement majority-based AND/OR logic, outperforming
Intel Skylake-CPU, NVIDIA GeForce GPU, and even HMC
[5] by 44.9×, 32.0×, and 2.4×, respectively. DRISA [3]
employs 3T1C- and 1T1C-based computing mechanisms and
achieves 7.7× speedup and 15× better energy-efficiency
over GPUs to accelerate convolutional neural networks.
However, there are different challenges in such platforms
that make them inefficient acceleration solutions for more
complex bulk bit-wise logic implementations, e.g. X(N)OR-
and addition-based applications such as data-encryption [6],
DNA alignment [7], and graph processing [8], [9]. The
need for multi-cycle operations, row initialization and add-

on dual-contact cells as well as reliability concerns due to
multiple row activation mechanisms, etc. motivated us to
explore alternative circuit-architecture solutions.

In this work, we propose a high-throughput, reconfigurable
PIM accelerator based on DRAM, called ReDRAM. The pro-
posed platform exploits a new in-memory computing mech-
anism called Dual-Row Activation mechanism (DRA) to
perform a full-set of 1- and 2-input bulk bit-wise operations
(NOT, (N)AND, (N)OR, and X(N)OR) between operands
stored in different word-lines. The DRA is developed based
on analog operation of DRAM sub-arrays with a modest
change in the sense amplifier circuit such that different
operations can be efficiently realized on every memory bit-
line. This mechanism alleviates the reliability concerns of
the voltage deviation on the bit-line and eliminates the need
for dual-contact cell rows and multi-cycle operations of
counterpart designs [2], [3]. Our main contributions in this
work can be summarized as follows.

1) To the best of our knowledge, ReDRAM is the
first processing-in-DRAM platform that proposes a high-
throughput and energy-efficient acceleration solution exploit-
ing DRAM arrays based on dual-row activation mechanism
to realize a full-set of bulk bit-wise operations. We develop
ReDRAM based on a set of novel microarchitectural and
circuit-level schemes to realize massive data-parallel com-
putational unit for different applications; 2) We extensively
evaluate and compare ReDRAM’s performance with various
conventional and PIM computing platforms, i.e. a Core-i7
Intel CPU [10], an NVIDIA GTX 1080Ti GPU [11], Ambit
[2], DRISA-1T1C [3], and HMC [5], to handle bulk bit-wise
operations; 3) We provide case studies of how important
graph processing and data encryption workloads can be
partitioned and mapped to our architecture and how they
can benefit from it.

II. BACKGROUND

A. Processing-in-DRAM Mechanisms

A DRAM hierarchy at the top level is composed of
channels, modules, and ranks. Each memory rank, with a
data bus typically 64-bits wide, includes a set of memory
chips that are manufactured with a variety of configurations
and operate in unison [2]. Each chip is further divided
into multiple memory banks that contains 2D sub-arrays of
memory cells virtually-organized in memory matrices (mats).
Banks within same chips share I/O, buffer and banks in
different chips working in a lock-step manner. Each memory
sub-array, as shown in Fig. 1a, has 1) a large number of rows
(typically 29 or 210) holding DRAM cells, 2) a row of Sense

978-1-7281-2350-9/19/$31.00 ©2019 IEEE

Authorized licensed use limited to: University of Central Florida. Downloaded on June 23,2020 at 18:35:10 UTC from IEEE Xplore. Restrictions apply.

Fig. 1: (a) DRAM sub-array organization, (b) DRAM cell
and Sense Amplifier, (c) Dual-contact DRAM cell.

Amplifiers (SA), and 3) a Row Decoder (RD) connected to
the cells. A DRAM cell basically consists of two elements,
a capacitor (storage) and an Access Transistor (AT) (Fig.
1b). The drain and gate of the AT is connected to the Bit-
line (BL) and Word-line (WL), respectively. DRAM cell
encodes the binary data by the charge of the capacitor. It
represents logic ‘1’ when the capacitor is full-charged, and
logic ‘0’ when there is no charge.
•Write/Read Operation: At initial state, both BL and

BL is always set to Vdd

2 . Technically, accessing data from
a DRAM’s sub-array (write/read) after initial state is done
through three consecutive commands [2] issued by the mem-
ory controller: 1) During the activation (i.e. ACTIVATE),
activating the target row, data is copied from the DRAM
cells to the SA row. Fig. 1b shows how a cell is connected
to a SA via a BL. The selected cell (storing Vdd or 0)
shares its charge with the BL leading to a small change in
the initial voltage of BL (Vdd

2 ± δ). Then, by activating the
enable signal, the SA senses and amplifies the δ of the BL
voltage towards the original value of the data through voltage
amplification according to the switching threshold of SA’s
inverter [12]. 2) Such data can be then transferred from/to
SA to/from DRAM bus by a READ/WRITE command. In
addition, multiple READ/WRITE commands can be issued to
one row. 3) The PRECHARGE command precharges both BL
and BL again and makes the sub-array ready for the next
access.
•Copy and Initialization Operations: To enable a fast

(< 100ns) in-memory copy operation within DRAM sub-
arrays, rather than using ∼ 1µs conventional operation in
Von-Neumann computing systems, RowClone-Fast Parallel
Mode (FPM) [13] proposes a PIM-based mechanism that
does not need to send the data to the processing units.
In this scheme, two back-to-back ACTIVATE commands
to the source and destination rows without PRECHARGE
command in between, leads to a multi-kilo byte in-memory
copy operation. This operation takes only 90ns [13]. This
method has been further used for row initialization, where
a preset DRAM row (either to ‘0’ or ‘1’) can be readily
copied to a destination row. RowClone imposes only a 0.01%
overhead to DRAM chip area [13].
•Not Operation: The NOT function has been implemented

in different works employing Dual-Contact Cells (DCC), as
shown Fig. 1c. DCC is mainly designed based on typical
DRAM cell, but equipped with one more AT connected to

Fig. 2: (a) Ambit’s TRA [2], (b) DRISA’s 3T1C [3], (c)
DRISA’s 1T1C-logic [3]. (Glossary- Di/Dj : input rows data,
Dk: initialized row data, Dr result row data.)

BL. Such hardware-friendly design [2], [14], [15] can be
developed for a small number of rows on top of existing
DRAM cells to enable efficient NOT operation with issuing
two back-to-back ACTIVATE commands [2]. In this way,
the memory controller first activates the WLdcc1 (Fig. 1c) of
input DRAM cell, and reads the data out to the SA through
BL. It then activates WLdcc2 to connect BL to the same
capacitor and so writes the negated result back to the DCC.
•Other Logic Operations: To realize the logic function

in DRAM platform, Ambit [2] extends the idea of RowClone
by implementing 3-input majority function (Maj3)-based op-
erations in memory by issuing the ACTIVATE command to
three rows simultaneously followed by a single PRECHARGE
command, so-called Triple Row Activation (TRA) method.
As shown in Fig. 2a, considering one row as the control,
initialized by Dk= ‘0’/‘1’, Ambit can readily implement in-
memory AND2/OR2 in addition to Maj3 functions through
charge sharing between connected cells (Dk, Di and Dj)
and write back the result on Dr cell. It also leverage TRA
mechanism along with DCCs to realize the complementary
functions. However, despite Ambit shows only 1% area
over commodity DRAM chip [2], it suffers from multi-
cycle PIM operations to implement other functions such as
XOR2/XNOR2 based on TRA. Alternatively, DRISA-3T1C
method [3] utilizes the early 3-transistor DRAM design [16],
in which the cell consists of two separated read/write ATs,
and one more transistor to decouple the capacitor from the
read BL (rBL), as shown in Fig. 2b. This transistor connects
the two DRAM cells in a NOR style on the rBL naturally
performing functionally-complete NOR2 function. However,
DRISA-3T1C imposes very large area overhead (2T per cell)
and still requires multi-cycle operations to implement more
complex logic functions. DRISA-1T1C method [3] offers to
perform PIM through upgrading the SA unit by adding a
CMOS logic gate in conjunction with a latch, as depicted in
Fig. 2c. Such inherently-multi-cycle operation can enhance
the performance of a single function through add-on CMOS
circuitry, in two consecutive cycles. In first cycle, Di is read
out and stored in the latch, and in the second cycle, Dj

is sensed to perform the computation. However, this design
imposes excessive cycles to implement other logic functions

Authorized licensed use limited to: University of Central Florida. Downloaded on June 23,2020 at 18:35:10 UTC from IEEE Xplore. Restrictions apply.

and at least 12 transistors to each SA.
B. Challenges and Motivations

There are four main challenges in the existing processing-
in-DRAM platforms that this work aims to address:

Low Reliability (Challenge-1): By simultaneously ac-
tivating three cells in TRA method, the deviation on the
BL might be smaller than typical one-cell read operation
in DRAM. This can elongate the sense amplification state or
even adversely affect the reliability of the result. The problem
can be even intensified when multiple TRA are needed
to implement more complex functions. Row Initialization
(Challenge-2): Given R=AopB function (op ∈ AND2/OR2),
TRA-based method [2], [12] takes 4 consecutive steps to
calculate one result: 1-RowClone data of row A to row Di

(Copying first operand to a computation row to avoid data-
overwritten); 2-RowClone of row B to Dj ; 3-RowClone
of ctrl row to Dk (Copying initialized control row to a
computation row); 4-TRA and RowClone data of row Di

to R row (Computation and Writing-back the result). So,
TRA method needs at least 360ns to perform such in-
memory operations. DCC Rows (Challenge-3): Almost all
the existing PIM platforms rely on DCC rows to realize in-
memory NOT operation. This could impose excessive area
overhead to the sub-array and complicate control circuitry.
Besides, DCC is not a favorable solution fabrication-wise,
as it complicates DRAM fab process considering two types
of DRAM cell in every sub-array. Limited Throughput
X(N)OR (Challenge-4): Due to the intrinsic complexity of
X(N)OR-based logic implementations, current PIM designs
(such as Ambit [2], DRISA [3], and Dracc [17]) are not
able to offer a high-throughput and area-efficient X(N)OR
or addition in-memory operation despite utilizing maximum
internal DRAM bandwidth and memory-level parallelism
for NOT, (N)AND, (N)OR, and MAJ/MIN logic functions.
Moreover, while DRISA-1T1C method could implement
either XNOR or XOR functions as the add-on logic gate,
it requires at least two consecutive cycles to perform the
computation, which in turn limits other logic implementation.

III. THE RECONFIGURABLE PIM PLATFORM

A. Architecture

ReDRAM is designed to be an independent, high-
performance, energy-efficient accelerator based on main
memory architecture to accelerate a wide variety of ap-
plications. The main memory organization of ReDRAM is
shown in Fig. 3a based on typical DRAM hierarchy. Each
mat consists of multiple computational memory sub-arrays
connected to a Global Row Decoder (GRD) and a shared
Global Row Buffer (GRB). According to the physical address
of operands within memory, ReDRAM’s Controller (Ctrl)
is able to configure the sub-arrays to perform data-parallel
intra-sub-array computations. We divide the ReDRAM’s sub-
array row space into two distinct regions as depicted in
Fig. 3b: 1- Data rows (1016 rows out of 1024) connected
to a regular Row Decoder (RD), and 2- Computation rows
(8-labeled by x1, ..., x8), connected to a Modified Row

Decoder (MRD), which enables dual row activation required
for bulk bit-wise in-memory operations between operands.
ReDRAM’s computational sub-array is developed to perform
a full-set of bit-wise operations based on the proposed Dual-
Row Activation (DRA) mechanism leveraging charge-sharing
among different rows, as discussed below.

B. Dual Row Activation Mechanism

With a careful observation on the existing processing-in-
DRAM platforms, we realized that they are dealing with
different challenges which could be alleviated by rethinking
about SA circuit. Our key idea is to perform in-memory logic
operations through a DRA mechanism to address all four
challenges discussed in Section 2.2. To achieve this goal, we
propose a new reconfigurable SA, as shown in Fig. 3c, devel-
oped on top of existing DRAM circuitry. It consists of a regu-
lar DRAM SA equipped with add-on circuits including three
inverters, one NAND gate, and one MUX, controlled with
five enable signals (EnM , Enx, Enmux, EnC1, EnC2). This
design leverages the basic charge-sharing feature of DRAM
cell and elevates it to implement NOT/AND2/OR2/XOR2 logic
between two selected rows through static capacitive functions
in a single cycle. To implement capacitor-based logic, we
use two different inverters with shifted Voltage Transfer
Characteristic (VTC), as shown in Fig. 4a. In this way, a
NAND/NOR logic can be readily carried out based on high
switching voltage (Vs)/low-Vs inverters with standard high-
Vth/low-Vth NMOS and low-Vth/high-Vth PMOS transis-
tors. It is worth mentioning that utilizing low/high-threshold
voltage transistors along with normal-threshold transistors
have been accomplished in low-power application, and many
circuits have enjoyed this technique in low-power design
[18], [19].

Fig. 5 gives the detailed control signals of ReDRAM’s
sub-array to implement different memory and in-memory
logic functions (here, e.g. X(N)OR2). ReDRAM’s ctrl ac-
tivates EnM and Enx control-bits simultaneously (when
MUX is deactivated-Enmux=0) to perform typical memory
write/read operation. It is worth noting that in such memory
operations, MUX’s output voltage is high-z and BL voltage
is solely determined in sense amplification state through two
normal-Vs back-to-back inverters, just like normal DRAM’s
SA mechanism. Therefore, ReDRAM can perform the bulk
copy operation based on RowClone mechanism, as discussed
earlier. Now, consider Di and Dj operands (in Fig. 5b) are
RowCloned from data rows to x1 and x2 computational rows
and both BL and BL are precharged to Vdd

2 (Precharged
State). ReDRAM’s ctrl first activates two WLs in compu-
tational row space (here, x1 and x2) through the modified
decoder for charge-sharing when all the other enable signals
are deactivated. During sense amplification state, by setting
the proper enable set (EnM , Enx, Enmux, EnC1, EnC2),
tabulated in Fig. 5a (01111 for X(N)OR2), the input voltage
of both low- and high-Vs inverters in the reconfigurable SA
can be simply derived as Vi = n.Vdd

C , where n is the number
of DRAM cells storing logic ‘1’ and C represents the total
number of unit capacitors connected to the inverters (i.e. 2

Authorized licensed use limited to: University of Central Florida. Downloaded on June 23,2020 at 18:35:10 UTC from IEEE Xplore. Restrictions apply.

Fig. 3: (a) The ReDRAM memory organization, (b) Block level scheme of computational sub-array, (c) Computational Rows
and reconfigurable SA.
in DRA mechansim). Now, the low-Vs inverter acts as a
threshold detector by amplifying deviation from 1

4Vdd and
realizes a NOR2 function, as tabulated in the truth table in
Fig. 4b. At the same time, the high-Vs inverter amplifies
the deviation from 3

4Vdd and realizes a NAND2 function.
Accordingly, XNOR2 function of input operands can be
realized after CMOS NAND gate. Now, ReDRAM’s MUX
can be readily reconfigured through the selectors to assign
NOR2/NAND2/buffer/XNOR2 value and its complementary
logic to BL and BL, respectively. As can be seen, by setting
enable set to 01111, XOR2 result can be produced in a single
cycle on the BL.

The transient voltage simulation results of DRA mecha-
nism to realize single-cycle in-memory operations is shown
in Fig. 6. We can observe how NOR2/NAND2/XNOR2 func-
tion is produced for two inputs (Di and Dj). In this case,
MUX’s selectors are configured to set BL voltage with
XNOR2 result (Fig. 6). We can see that cell’s capacitor is ac-
cordingly charged to Vdd (when DiDj=10/01) or discharged
to GND (when DiDj=00/11) during sense amplification
state. Therefore, DRA mechanism can effectively provide
single-cycle logic functions (NOT, AND, OR, XOR) and
two-cycle complementary logics to address the challenge-
2 and -3 discussed in Section 2.2 by eliminating the need
for the row initialization and DCC Rows. Note that, NOT
function is readily realized on the BL by selecting the
corresponding MUX selectors (01110). In addition, ReDRAM
can perform more complex in-memory logic functions (such
as XOR2) in a single memory cycle not relying on multiple
TRA-based [2] or NOR-based [3] operations.

Fig. 4: (a) VTC and (b) Truth table of the SA’s inverters to
realize capacitive NAND2-NOR2 functions.

C. Software Support

From a programmer perspective, ReDRAM is more of
a third party accelerator that can be connected directly to
the memory bus or through PCI-Express lanes rather than
a memory unit. Therefore, a virtual machine and ISA for
general-purpose parallel thread execution need to be defined.
Accordingly, the programs are translated at install time to
the ReDRAM hardware instruction set discussed here to
realize the functions tabulated in Table I. Additionally, Table
I lists the corresponding function implementation in Ambit
[2] and DRISA [3] platforms. The micro and control transfer
instructions are not discussed here.
TABLE I: The basic functions supported by ReDRAM, Ambit
and DRISA. Command Sequence

Func. Operation ReDRAM Ambit [2] DRISA‡ [3]

Copy Dr ← Di AAP(Di, Dr)† AAP(Di, Dr) AP(Di, Latch)
AP(Latch,Dr)

NOT Dr ← Di AAP(Di, Dr, 10) AAP(Di, dcc2)
AAP(dcc1, Dr)

AAP(Di, dcc2)
AAP(dcc1, Dr)

AND Dr ← Di.Dj

AAP(Di, x1)
AAP(Dj , x2)

AAP(x1, x2, Dr, 01)

AAP(Di, x1)
AAP(Dj , x2)
AAP(0, x3)*

AAP(x1, x2, x3, Dr)**

AP(Di, Latch)
AAP(Dj , x1)

AAP(Latch, x1, Dr)

OR Dr ← Di +Dj

AAP(Di, x1)
AAP(Dj , x2)

AAP(x1, x2, Dr, 00)

AAP(Di, x1)
AAP(Dj , x2)
AAP(1, x3)*

AAP(x1, x2, x3, Dr)**

N/A

XOR2 Dr ← Dij

AAP(Di, x1)
AAP(Dj , x2)

AAP(x1, x2, Dr, 11)

AAP(Di, x1, dcc2)
AAP(Dj , x2, dcc4)
AAP(0, x3, x4)*

AP(dcc1, x2, x3, x2)**
AP(dcc3, x1, x4, x1)**

AAP(1, x3)*
AAP(x1, x2, x3, Dr)**

N/A

† Size of input vectors are not shown here. ‡ DRISA’s 1T1C-logic is realized with
add-on AND2 gate. Therefore, it can not implement other functions. ∗Row

initialization steps. ∗∗TRA steps.

ReDRAM is developed based on
ACTIVATE-ACTIVATE-PRECHARGE command a.k.a.
AAP primitives and most bulk bit-wise operations involve
a sequence of AAP commands. To enable processor to
efficiently communicate with ReDRAM, we developed two
types of AAP-based instructions:

1- AAP (src, des, size) that runs the following
commands sequence: 1) ACTIVATE a source address (src);
2) ACTIVATE a destination address (des); 3) PRECHARGE
to prepare the array for the next access. The size of input
vectors for in-memory computation must be a multiple of
DRAM row size, otherwise the application must pad it with
dummy data. The type-1 instruction is mainly used for copy
function;

2- AAP (src1, src2, des, opcode, size)
that performs DRA method by activating two source

Authorized licensed use limited to: University of Central Florida. Downloaded on June 23,2020 at 18:35:10 UTC from IEEE Xplore. Restrictions apply.

Fig. 5: (a) ReDRAM’s control signals and activations in the sense amplification state, (b) Dual Row Activation mechanism.
Here, X(N)OR2 is implemented by setting enable set (EnM , Enx, Enmux, EnC1, EnC2) to 01111.

addresses (src1 and src2) and then writes back the result
on a destination address (des) according to the opcode.
Here opcode corresponds to the MUX’s selectors (EnC1

and EnC2), as shown in Fig. 5a.
For instance, in order to implement the XOR2-in-memory,

as tabulated in Table I, ReDRAM first copies the input
operands from data rows to computational rows in two
consecutive cycles using AAP-type-1 and then perform the
operation in a single cycle using AAP-type-2 by setting
the opcode to 11. The similar operation requires at least 7
consecutive cycles based on Ambit’s TRA mechanism.

D. Reliability

We performed a comprehensive circuit-level simulation to
study the effect of process variation on both DRA and TRA
methods considering different noise sources and variation in
all components including DRAM cell (BL/WL capacitance
and transistor, shown in Fig. 7) and SA (width/length of
transistors-Vs). We ran Monte-Carlo simulation with 45nm
NCSU Product Development Kit (PDK) library [20] in Ca-
dence Spectre (DRAM cell parameters were taken and scaled
from Rambus [21]) under 10000 trials and increased the
amount of variation from ±0% to ±30% for each method.
Table II shows the percentage of the test error in each
variation. We observe that even considering a significant

Fig. 6: The transient simulation of the internal ReDRAM’s
sub-array signals in DRA mechanism.

±10% variation, the percentage of erroneous DRA across
10000 trials is zero, where TRA method shows a failure with
0.18%. Therefore, ReDRAM offers a solution to alleviate
challenge-1 by showing an acceptable voltage margin in
performing operations based on DRA mechanism. By scaling
down the transistor size, the process variation effect is
expected to get worse [2], [13]. Since ReDRAM is mainly
developed based on existing DRAM structure and operation
with slight modifications, different methods currently-used
to tackle process variation can be also applied for ReDRAM.

Fig. 7: Noise sources in
DRAM cell. Glossary: Cwbl,
Cs, and Ccross are WL-
BL, BL-substrate, and BL-
BL capacitance, respectively.

Variation TRA DRA
±5% 0.00 0.00
±10% 0.18 0.00
±15% 5.5 1.2
±20% 17.1 9.6
±30% 28.4 16.4

TABLE II: Process varia-
tion analysis.

IV. RAW PERFORMANCE

To assess the performance of ReDRAM as a new PIM
platform, a comprehensive circuit-architecture evaluation
framework and two in-house simulators are developed. 1-
At the circuit level, we developed ReDRAM’s sub-array
with new peripheral circuity (SA, MRD, etc.) in Cadence
Spectre with 45nm NCSU Product Development Kit (PDK)
library [20] in to verify the DRA mechanism and achieve the
performance parameters. 2- An architectural-level simulator
is built on top of Cacti [22]. The circuit level results were
then fed into our simulator. It can change the configuration
files corresponding to different array organization and report
performance metrics for AAP-based PIM operations. The
memory controller circuits are designed and synthesized
by Design Compiler with a 45nm industry library. 3- A
behavioral-level simulator is developed in Matlab to calculate
the latency and energy that ReDRAM spends on different
tasks. Besides, it has a mapping optimization framework
to maximize the performance according to the available
resources.

Authorized licensed use limited to: University of Central Florida. Downloaded on June 23,2020 at 18:35:10 UTC from IEEE Xplore. Restrictions apply.

A. Throughput

We evaluate and compare the ReDRAM’s raw performance
with different computing units and accelerators including a
Core-i7 Intel CPU [10] and an NVIDIA GTX 1080Ti Pascal
GPU [11]. In PIM domain, we shall restrict our comparison
to four recent processing-in-DRAM platforms, Ambit [2],
DRISA-1T1C [3], DRISA-3T1C [3], and HMC 2.0 [5], to
handle four bulk bit-wise operations, i.e. NOT, AND2, OR2,
and XOR2. To have a fair comparison, we report ReDRAM’s
and other PIM platforms’ raw throughput implemented with
8 banks with 1024×256 computational sub-arrays. The Intel
CPU consists of 4 cores and 8 threads working with two 64-
bit DDR4-1866/2133 channels. The Pascal GPU has 3584
CUDA cores running at 1.5GHz [11] and 352-bit GDDR5X.
The HMC has 32-10 GB/s bandwidth vaults. Accordingly,
we develop an in-house micro-benchmark to run the opera-
tions repeatedly for 227/228/229-bit length input vectors and
report the throughput of each platform, as shown in Fig. 8a-d.

Fig. 8: Throughput of (a) NOT, (b) AND2, (c) OR2, and
(d) XOR2 operations implemented by different platforms. X-
axis: Vector Size (MB) and Y-axis: Log Scaled Throughput
(GOps/second).

We observe that 1) either the external or internal DRAM
bandwidth has limited the throughput of the CPU, GPU,
and even HMC platforms. However, HMC outperforms the
CPU and GPU with ∼25× and 6.5× higher performance on
average for bulk bit-wise operations. Besides, PIM platforms
achieve remarkable throughput compared to Von-Neumann
computing systems (CPU/GPU) through unblocking the data
movement bottleneck. ReDRAM shows on average 54× and
7.1× better throughput compared to CPU and GPU, respec-
tively. 2) While the ReDRAM, Ambit, and DRISA platforms
achieve almost the same performance on performing bulk bit-
wise NOT function, shown in Fig. 8a, ReDRAM outperforms
other PIMs in performing AND2,OR2, and XOR2 operations.
As for XOR2, our platform improves the throughput on
average by 2.3×, 1.9×, 3.7× compared with Ambit [2],
DRISA-1T1C [3], and DRISA-3T1C [3], respectively. This
mainly comes from the DRA mechanism that eliminates
the need for row the initialization in Ambit and multi-
cycle DRISA mechanism. Note that, the add-on logic of
DRISA-1T1C is developed with the corresponding logic in

the plots [3], however, in practice only one single logic
can be accelerated with this platform. That is why DRISA-
1T1C shows the second best performance in performing
bulk bit-wise XOR2 operation. To sum it up, ReDRAM’s
DRA mechanism could effectively address challenge-4 by
proposing the high-through bulk bit-wise X(N)OR operation.
B. Energy

We estimate the energy that DRAM chip consumes to
perform the four bulk bit-wise operations per Kilo-Byte for
ReDRAM, Ambit [2], DRISA-3T1C [3], and CPU1. Fig.
9 shows that ReDRAM achieves 2.6× and 2.8× energy
reduction over Ambit [2] and DRISA-3T1C [3], respectively,
to perform bulk bit-wise XOR2 operation. Besides, compared
with copying data through the DDR4 interface, ReDRAM re-
duces the energy by ∼80×. As for bit-wise in-memory AND2
operation, ReDRAM outperforms TRA-based Ambit, NOR-
based DRISA-3T1C, and CPU, respectively, with ∼2.1×,
1.9×, and 82× reduction in energy consumption.

Fig. 9: Energy of different platforms (Y-axis: log scale).
C. Area Overhead

To estimate the area overhead of ReDRAM on top of
commodity DRAM chip, three hardware cost sources must
be taken into consideration. First, add-on transistors to SAs;
in our design, each SA requires 30 additional transistors
connected to each BL. Second, the 3:8 MRD overhead; we
modify each WL driver by adding two more transistors in the
typical buffer chain, as depicted in Fig. 3c, so there is only 16
add-on transistors for computational rows. Third, the Ctrl’s
overhead to control enable bits; ctrl generates the activation
bits with MUX units with 6 transistors. To sum it up,
ReDRAM imposes 31 DRAM rows (31×256 transistors) per
sub-array, at the most, which can be interpreted as ∼ 14% of
DRAM chip area. Note that Ambit design requires DCC rows
with two WL associated with each; based on the estimation
made by [14], each DCC row imposes roughly one transistor
over regular DRAM cell to each BL. Besides, DRISA-3T1C
[3] requires 2 add-on transistors per cell, which essentially
triple the area overhead.

V. APPLICATION STUDY
A. Graph Analysis

Real world graph consists of millions of vertices and edges
that need to be processed. To efficiently map such graphs
into ReDRAM architecture, graph partitioning methods are
used. Here, we adopt interval-block partitioning method to
balance workloads of each ReDRAM’s chip and maximize
parallelism. We use hash-based method [8] to split the
vertices into M intervals and then divide edges into M2

1This energy doesn’t involve the energy that processor consumes to
perform the operation.

Authorized licensed use limited to: University of Central Florida. Downloaded on June 23,2020 at 18:35:10 UTC from IEEE Xplore. Restrictions apply.

Fig. 10: (a) Data partitioning and allocation in chip level, (b)
ReDRAM’s mapping and acceleration for finding matching
index in sub-array level.

blocks as shown in Fig. 10a. For example,the matching index
Mi,j quantifies the similarity between two vertices (Vi and
Vj) based on the number of common neighbors shared by
vertices as (

∑ common neighbors∑ total number of neighbors). The main task
here is to find the common and total number of neighbors
which can be implemented and accelerated by ReDRAM.
Fig. 10b provides a straightforward example to elucidate
the mapping and acceleration method of ReDRAM. After
partitioning and allocation, the sample four-vertex network
is converted to adjacency matrix and stored in 4 consecutive
rows of sub-array. To find the common neighbors of two
particular vertices (e.g. V1, V2), ReDRAM performs parallel
AND2 on the rows and SA’s outputs determine the matches
(here, V4). In addition, the total number of neighbors is
found by performing OR2 operation on the same rows. Then,
ReDRAM can readily process the summation operation based
on the ISA.
•Experiments: We configure the ReDRAM’s memory sub-

array with 1024 rows and 256 columns, 4×4 mats (with
1/1 as row/column activation) per bank organized in H-
tree routing manner, 16×16 banks (with 1/1 as row/column
activation) and 1024Mb total capacity. Therefore, an identical
physical memory size (1024Mb) is considered for all PIM
implementations henceforth. To estimate the performance of
the accelerators, we take three social network data-sets, as
tabulated in Table III.

TABLE III: Social Network data-sets.
Dataset Nodes Edges Graph Information

ego-Facebook 4,039 88,234 profiles & friends lists from Facebook
dblp-2010 326,186 1,615,400 scientific collaboration network

amazon-2008 735,323 5,158,388 similarity among books reported by Amazon store

Fig. 11a depicts the energy that four accelerators (Am-
bit [2], ReDRAM, DRISA-3T1C [3], and GPU) consume
to perform matching-index task on different data-sets. We
observe that ReDRAM obtains the highest energy-efficiency
compared to others owning to DRA mechanism. ReDRAM
consumes on average 2.5× less energy than that of Am-

Fig. 11: (a) Normalized energy consumption, (b) Execution
time, (c) Memory bottleneck ratio of the accelerators.
bit accelerator. Compared to GPU, it reduces the energy
consumption by ∼21×. Fig. 11b plots the execution time
of the ReDRAM and other accelerators. We observe that
ReDRAM solution is on average 5× faster than that of Ambit
solution and 49× faster than GPU. This is mainly because
of fast and parallel in-memory operations of ReDRAM,
specifically for implementing AND2-OR2 operations. Fig.
11c also reports the Memory Bottleneck Ratio (MBR), which
is the time fraction at which the computation has to wait for
data and on-/off-chip data transfer obstructs its performance
(memory wall happens) running matching index task on
three data-sets. The experiment is performed according to
the peak throughput for each platform considering number of
memory access. The results reemphasize the PIM platform’s
efficiency for solving memory wall issue. We observe that
ReDRAM along with other PIM solutions spend less than
∼22% time for memory access and data transfer. However,
GPU accelerator spends more than 90% time waiting for the
loading data.
B. Data Encryption

We take the Advanced Encryption Standard (AES) algo-
rithm as an example to elucidate the mapping of transfor-
mations in ReDRAM, which reveals its benefits of energy-
efficiency and high-throughput for in-memory data encryp-
tion applications. AES is an iterative symmetric-key cipher
where both sender and receiver units use a single key for
encryption and decryption. AES basically works on the
standard input length of 16 bytes (128 bits) data organized
in a 4×4 matrix (called state matrix (SM)) while using 3
different key lengths (128, 192, and 256 bits). For 128-bit
key length, AES encrypts the input data after 10 rounds
of consecutive transformations enumerated as SubBytes,
ShiftRows, MixColumns, and AddRoundKey in Fig. 12.

Fig. 12: AES block diagram with the required data organi-
zation and gate utilization of each transformation.

To facilitate working with input data, each input byte data
is distributed into 8-bit such that eight memory sub-arrays
are filled by 4×4 bitmatrices. After mapping, ReDRAM can
support the required AES bulk bit-wise operations to accel-
erate each transformations inside the memory. As shown in

Authorized licensed use limited to: University of Central Florida. Downloaded on June 23,2020 at 18:35:10 UTC from IEEE Xplore. Restrictions apply.

Fig. 12, all transformations are mainly based on (N)AND and
XOR gates. In SubBytes, MixColumns, and AddRoundKey
stages, parallel in-memory XOR2 and (N)AND2 operations
contribute to more than 90% of the operations. In ShiftRows
stage, SM will undergo a cyclical shift operation by a certain
offset. One of the DRAM arrays is considered as a buffer to
temporarily save the readout data. In this way, after reading
the data from second to fourth row (3 rows), they can be
easily rewritten to the memory with desired order using
ReDRAM’s copy operation.
•Experiments: We assess the performance of 128-bit AES

implemented by general purpose processor (GPP), ASIC,
CMOL [23], Ambit [2], DRISA-3T1C [3], and ReDRAM, in
terms of energy consumption and number of cycles required
for the process. For evaluation of AES performance in
GPP, AES C code is compiled, then cycle-accurate gem5
[24] is used to take AES binary and accordingly system
level processor power evaluating tool McPAT [25] is used
to estimate power dissipation. For evaluation of AES in
CMOS ASIC (1.133GHz), Synopsys Design Compiler tool
is used. Fig. 13a and Fig. 13b show the breakdown of energy
(Y-axis in Log scale) and number of cycles required for
different AES transformations after mapping to the different
platforms, respectively.

Fig. 13: Breakdown of (a) Energy consumption and (b) Delay
of different AES implementations.

The results show the ReDRAM’s energy-efficiency (Fig.
13a) compared to other platforms. It reduces the energy
consumption by ∼ 23% compared to the CMOS-ASIC. From
number of cycles stand point, we observe that MixColumns
consumes the most clock cycles as well as energy due to the
high number of resources (memory and in-memory XOR2)
that it takes during operation. In some of the XOR-unfriendly
platforms such as Ambit [2], MixColumns contributes to
more than 70% of the energy consumption and number of
cycles. Overall, ReDRAM requires the least number of cycles
compared with other processing-in-DRAM platforms and
GPP. However, ASIC (with 336 cycles) and CMOL (470)
designs show better performance compared to ReDRAM
(552).

VI. CONCLUSION

In this work, we presented ReDRAM, as a high-throughput
and reconfigurable PIM architecture to implement a full set
of 1- and 2-input bulk bit-wise operations (NOT, (N)AND,
(N)OR, and even X(N)OR). ReDRAM exploits a new dual-
row activation mechanism and eliminates the need for previ-
ous mechanisms based on triple-row activation, dual-contact
cells, etc. The simulation results show that as a graph

processing accelerator, ReDRAM reduces the energy con-
sumption and execution time ∼21× and 49×, respectively,
compared with GPU. As for AES data-encryption, it reduces
the energy consumption by 23% compared to CMOS-ASIC
implementation.

ACKNOWLEDGEMENTS
This work is supported in part by the National Science Founda-

tion under Grants No. 1740126 and No. 1908495 and Semiconduc-
tor Research Corporation nCORE.

REFERENCES

[1] P. Chi et al., “Prime: A novel processing-in-memory architecture for
neural network computation in reram-based main memory,” in ISCA.
IEEE Press, 2016.

[2] V. Seshadri et al., “Ambit: In-memory accelerator for bulk bitwise
operations using commodity dram technology,” in Micro. ACM, 2017,
pp. 273–287.

[3] S. Li et al., “Drisa: A dram-based reconfigurable in-situ accelerator,”
in Micro. ACM, 2017, pp. 288–301.

[4] S. Aga et al., “Compute caches,” in High Performance Computer
Architecture (HPCA), 2017 IEEE International Symposium on. IEEE,
2017, pp. 481–492.

[5] “Hybrid memory cube speci!cation 2.0.” [Online]. Avail-
able: http://www.hybridmemorycube.org/files/SiteDownloads/HMC-
30G-VSR˙HMCC˙Specification˙Rev2.0˙Public.pdf.

[6] S. Angizi et al., “Rimpa: A new reconfigurable dual-mode in-memory
processing architecture with spin hall effect-driven domain wall mo-
tion device,” in ISVLSI. IEEE, 2017, pp. 45–50.

[7] S. Angizi, J. Sun, W. Zhang, and D. Fan, “Aligns: A processing-
in-memory accelerator for dna short read alignment leveraging sot-
mram,” in Proceedings of the 56th Annual Design Automation Con-
ference 2019. ACM, 2019, p. 144.

[8] G. Dai et al., “Graphh: A processing-in-memory architecture for large-
scale graph processing,” IEEE TCAD, 2018.

[9] S. Angizi et al., “Graphs: A graph processing accelerator leveraging
sot-mram,” in DATE. IEEE, 2019, pp. 378–383.

[10] “6th generation intel core proces-
sor family datasheet.” [Online]. Available:
https://www.intel.com/content/www/us/en/products/processors/core/core-
vpro/i7-6700.html

[11] “Geforce gtx 1080 ti.” [Online]. Available: https://www.nvidia.com/en-
us/geforce/products/10series/geforce-gtx-1080-ti/

[12] V. Seshadri et al., “Fast bulk bitwise and and or in dram,” IEEE
Computer Architecture Letters, vol. 14, 2015.

[13] V. Seshadri, Y. Kim et al., “Rowclone: fast and energy-efficient in-
dram bulk data copy and initialization,” in 46th Micro. ACM, 2013,
pp. 185–197.

[14] H. B. Kang and S. K. Hong, “One-transistor type dram,” Apr. 20 2010,
uS Patent 7,701,751.

[15] S. Angizi and D. Fan, “Graphide: A graph processing accelerator
leveraging in-dram-computing,” in Proceedings of the 2019 on Great
Lakes Symposium on VLSI. ACM, 2019, pp. 45–50.

[16] G. Sideris, “Intel 1103-mos memory that defied cores,” Electronics,
vol. 46, no. 9, pp. 108–113, 1973.

[17] Q. Deng et al., “Dracc: a dram based accelerator for accurate cnn
inference,” in 55th DAC. ACM, 2018, p. 168.

[18] M. W. Allam et al., “High-speed dynamic logic styles for scaled-down
cmos and mtcmos technologies,” in ISLPD. ACM, 2000, pp. 155–
160.

[19] K. Navi et al., “A novel low-power full-adder cell with new technique
in designing logical gates based on static cmos inverter,” Microelec-
tronics Journal, vol. 40, pp. 1441–1448, 2009.

[20] (2011) Ncsu eda freepdk45. [Online]. Available:
http://www.eda.ncsu.edu/wiki/FreePDK45:Contents

[21] . DRAM Power Model. https://www.rambus.com/energy/.
[22] S. Thoziyoor, N. Muralimanohar, J. H. Ahn, and N. P. Jouppi, “Cacti

5.1,” Technical Report HPL-2008-20, HP Labs, Tech. Rep., 2008.
[23] Z. Abid et al., “Efficient cmol gate designs for cryptography applica-

tions,” IEEE TNANO, vol. 8, no. 3, pp. 315–321, 2009.
[24] N. Binkert et al., “The gem5 simulator,” SIGARCH, vol. 39, pp. 1–7,

2011.
[25] S. Li et al., “Mcpat: an integrated power, area, and timing modeling

framework for multicore and manycore architectures,” in MICRO.
ACM, 2009, pp. 469–480.

Authorized licensed use limited to: University of Central Florida. Downloaded on June 23,2020 at 18:35:10 UTC from IEEE Xplore. Restrictions apply.

